Planets Beyond our Solar System – Journey To Another Stars – Space Documentary

Planets Beyond our Solar System -  Journey To Another Stars -  Space Documentary Listen

A livestream from Space Documentary published in Space

There's no two-ways about it, the Universe is an extremely big place! And thanks to the limitations placed upon us by Special Relativity, traveling to even the closest star systems could take millennia. As we addressed in a previous article, the estimated travel time to the nearest star system (Alpha Centauri) could take anywhere from 19,000 to 81,000 years using conventional methods.
For this reason, many theorists have recommended that humanity rely on generation ships to spread the seed of humanity among the stars. Naturally, such a project presents many challenges, not the least of which is how large a spacecraft would need to be to sustain a multi-generational crew. In a new study, of international scientists addressed this very question and determined that a lot of interior space would be needed!

The study, which recently appeared online, was led by Dr. Frederic Marin of the Astronomical Observatory of Strasbourg and Camille Beluffi, a particle physicist with the scientific start-up Casc4de. They were joined by Rhys Taylor of the Astronomical Institute of the Czech Academy of Science, and Loic Grau of the structural engineering firm Morphosense.

Their study is the latest in a series conducted by Dr. Marin and Beluffi that address the challenges of sending a multi-generational spacecraft to another star system. In a previous study, they addressed how large a generation ship's crew would need to be in order to make it to their destination in good health.

They did this using custom-made numerical code software developed by Dr. Marin himself known as HERITAGE. In a previous interview with Dr. Marin, he described HERITAGE as "a stochastic Monte Carlo code that accounts for all possible outcomes of space simulations by testing every randomized scenario for procreation, life and death."

From their analysis, they determined that a minimum of 98 people would be needed to accomplish a multi-generational mission to another star system, without risks of genetic disorders and other negative effects associated with inter-marrying. For this study, the team addressed the equally important question of how to feed the crew.